Evaluation of HPAI surveillance in Mali

Molia S1*, Lapeyre S1, Sidibé M2, Sissoko K2, N'Diaye R3, Diall M3, & Doumbia L2

¹ CIRAD, UPR AGIRs, Bamako, Mali ² DNSV, Bamako, Mali ³ PACE, Bamako, Mali

INTRODUCTION

EPIVET: the network used for HPAI surveillance in Mali

- EPIVET = epidemiosurveillance network established in 2001 in Mali and reorganised in 2008
- Highly pathogenic avian influenza (HPAI) added in 2006 to the list of diseases targeted by EPIVET.
 Various projects (PALCGA, SPINAP, STOP-AI, etc) thereafter funded to support the surveillance of HPAI in Mali
- Problem = no review of the surveillance system available to know where to best allocate resources
 - ⇒ Objectives: Evaluate the organisation and functioning of HPAI surveillance
 - Identify strengths and weaknesses
 - Provide recommendations for improvement

METHODS

Semi-quantitative evaluation of HPAI surveillance

Design of a semi-quantitative evaluation grid

- Adapted from evaluation grid for rinderpest surveillance used by PACE program
- · Includes 8 components, 28 criteria, 128 subcriteria
- · Each subcriterion corresponds to a question

Field survey and scoring by different experts

- Visits, face to face interviews, and questionnaire fill-up in all regional units and surveillance posts of EPIVET network
- Questionnaire data entered in database then used to score each question from 1 (worst) to 4 (best) based on scoring tables specific to the type of question
- Scoring by four different experts: two members of EPIVET, two outside observers
- Scores averaged after discard of minimum and maximum scores

Scoring table for quest (E.g. % of samples arri in a proper state of	riving at the laboratory

Possible answer	Score
≤15%	1
15< ≤30%	1.5
30< ≤45%	2
45< ≤60%	2.5
60< ≤75%	3
75< ≤90%	3.5
>90%	4

RESULTS

Overall satisfactory surveillance efficiency

Evaluation scores vary among components of the surveillance system

- Overall score just above the satisfactory level
- Components linked to organisation of the surveillance system have good scores
- Components linked to functioning have higher scores at the central level than at the field level

Surveillance efforts vary over time and among regions

- Surveillance efforts increased during dry cool season and decreased during dry hot season
- Surveillance efforts significantly higher in the regions of Sikasso, Segou and Mopti, which have the largest poultry populations

DISCUSSION

Towards improvement

- Semi-quantitative evaluation methods are simple and useful to identify the weakest components of surveillance systems when stochastic scenario tree models are not applicable
- Subjectivity is inherent to this type of evaluation but was reduced by using scoring tables and four scorers

- Some improvements of surveillance can easily be implemented without much financial input (E.g. database back-up, distribution of outbreak investigation manuals)
- External support is needed for other improvements (E.g. availability of vehicles and gas coupons, trainings, simulation exercises)

Acknowledgments: We thank the French Ministry of Foreign Affairs for funding this work and staff from the Laboratoire Central Vétérinaire, the Directions Nationale and Régionales des Services Vétérinaires for participating to investigations