

A review on AIV and NDV strains circulating worldwide with particular reference to the characterization of virus strains isolated in Africa

Giovanni Cattoli

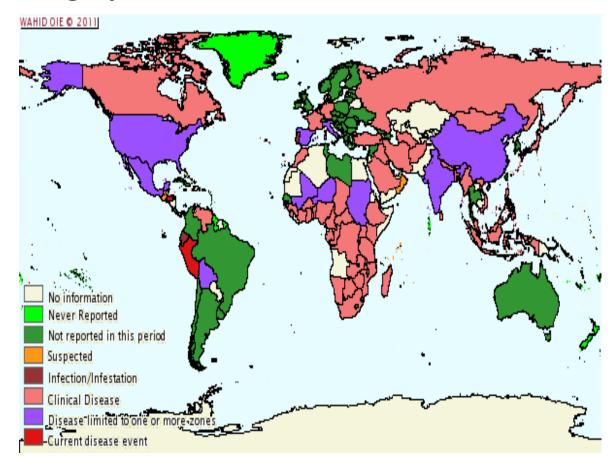
OIE/FAO Reference Laboratory for avian influenza & Newcastle disease Istituto Zooprofilattico Sperimentale delle Venezie Legnaro (Padova), Italy

Diseases known since long ago...

- First documented evidence of HPAI in Italy at the end of 19° century (fowl plague)
- Considered uncommon until 15 years ago

- ND first documented in Java and England in 1926 and 1927 respectively.
- Reports of a disease similar to ND in Central Europe and Scotland back to 1912 and 1896 respectively

...but their control is an increasing challenge


NDV-Geographical distribution

Velogenic ND is OIE-notifiable

Distributed worldwide

Endemic in many Countries

16 countries in the world
never reported ND
outbreaks (2010)

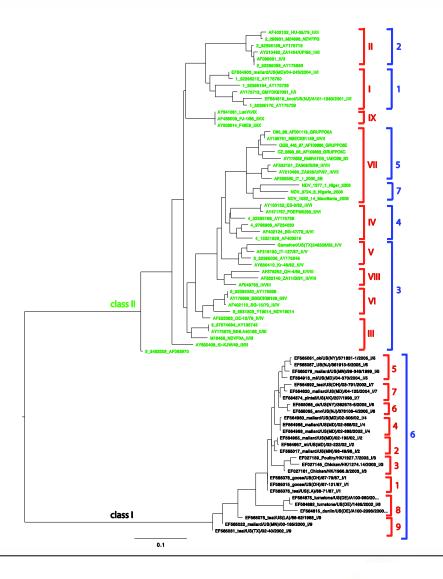
NDV in Africa (2009-2011)

42 African countriesReported suspected or

confirmed cases of ND.

20 countries reported ND in the first 6 months of this year

Source: WAHID


Genetic variability – NDV

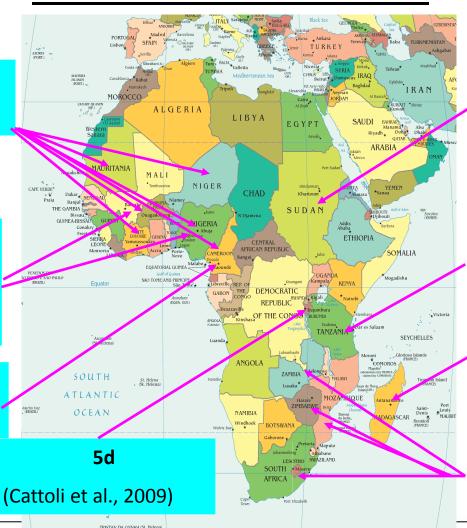
Intra-class genetic variability

Class I (lineage 6): 9 genogroups

Class II: 11 genotypes (7 distinct lineages)

Several distinct subgroups within lineages

APMV-1 in sub-saharan Africa


7 (Cattoli et al., 2009)

3, 4, 7(?)

(Snoeck et al., 2009; De Almeida et al., 2009)

1

(Snoeck et al., 2009)

3b, 5d

(Aldous et al., 2003; Hassan et al., 2009)

3c, 4a

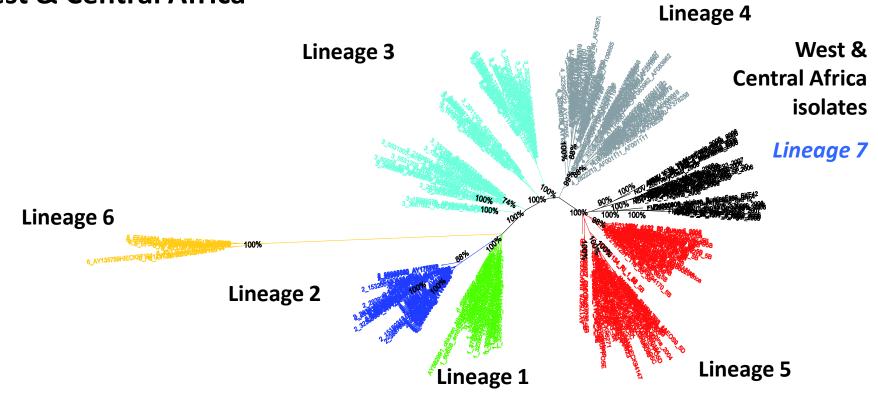
(Aldous et al., 2003)

1, 2, 3, 5

3g

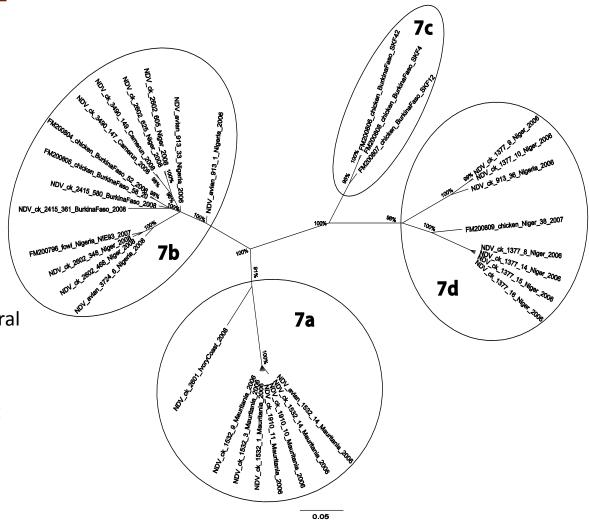
(Maminaina et al., 2010)

1, 2, 4, 5b, 5d


(Aldous et al., 2003; Abolnik et al., 2004)

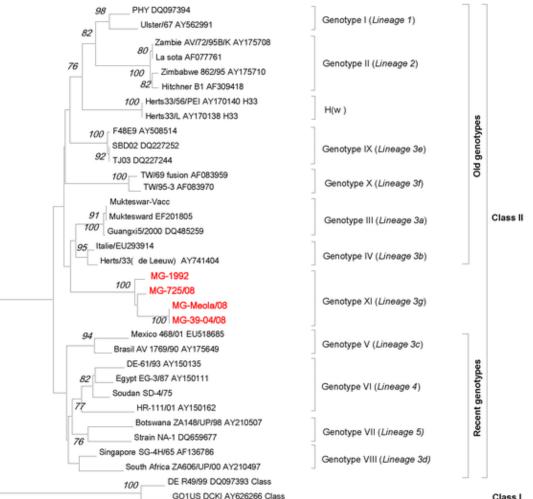
Distinct class II lineage (7) in

West & Central Africa


(Cattoli et al., 2009)

<u>Lineage 7</u> <u>in West & Central Africa</u>

- Genetic cluster confirmed by complete sequence of F, M, HN genes of representative isolates
- Lineage 7 widely circulating in backyard poultry in Western/Central Africa (from Mauritania to Cameroon)
- High genetic diversity with distinct sublineages
- Includes some new African viruses previously recognized as distinct 5 sublineages (Snoeck et al., 2009)



Distinct Class II genotype (3g) in Madagascar

ICPI 1.9

(Maminaina et al., 2010)

CONFIRMED CASE OF NEWCASTLE DISEASE IN IMPORTED BIRDS FROM WEST AFRICA SUCCESSFULLY PICKED UP IN UK QUARANTINE (2003)

Defra's quarantine arrangements have successfully identified Newcastle disease in two birds imported from Mali in West Africa.

The birds, which were discovered dead during route post-import quarantine checks, were part of a mixed consignment of finches and shrikes that arrived from Mali on April 16, 2003.

Avian Influenza

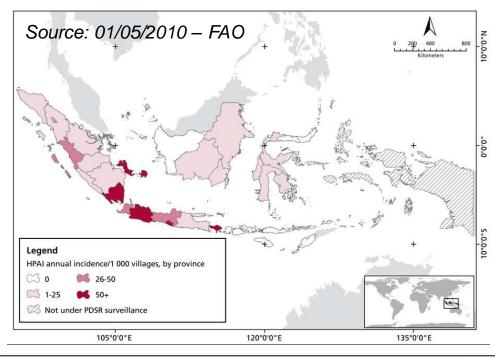
NAI in poultry reported in the period January-June 2011 (source OIE/WAHID)

LPAI reports

	Li Ai Toporto				
Country		Subtype			
1.	Taipei	H5N2, H7N3			
2.	Iran	?			
3.	Nepal	?			
4.	Palestine	?			
5.	Papua New Guinea	?			
6.	Seychelles	?			
7.	USA	H7N9			
8.	Dominican Rep.	?			
9.	Haiti	?			
10.	France	? (H5N3 ?)			
11.	The Netherlands	H7N1, H7N7			
12.	Germany	H7N7			
13.	Italy	H7N3, H5N2			

HPAI (H5N1) reports

Country				
1.	Bangladesh			
2.	Cambodia			
3.	Vietnam			
4.	India			
5.	Japan			
6.	Mongolia			
7.	Palestine			
8.	Israel			
9.	Egypt			



H5N1 endemicity

To date H5N1 HPAI is declared or considered endemic in 6 countries, at least.

- 1. Indonesia
- 2. PR China
- 3. Bangladesh
- 4. Vietnam
- 5. India
- 6. Egypt

Continuing evolution of H5N1 HPAI viruses

Clade 1 in the Mekong River Delta,

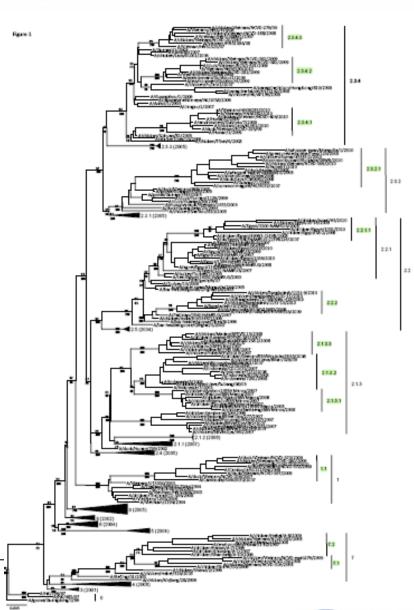
Clade 2.1.3 in Indonesia,

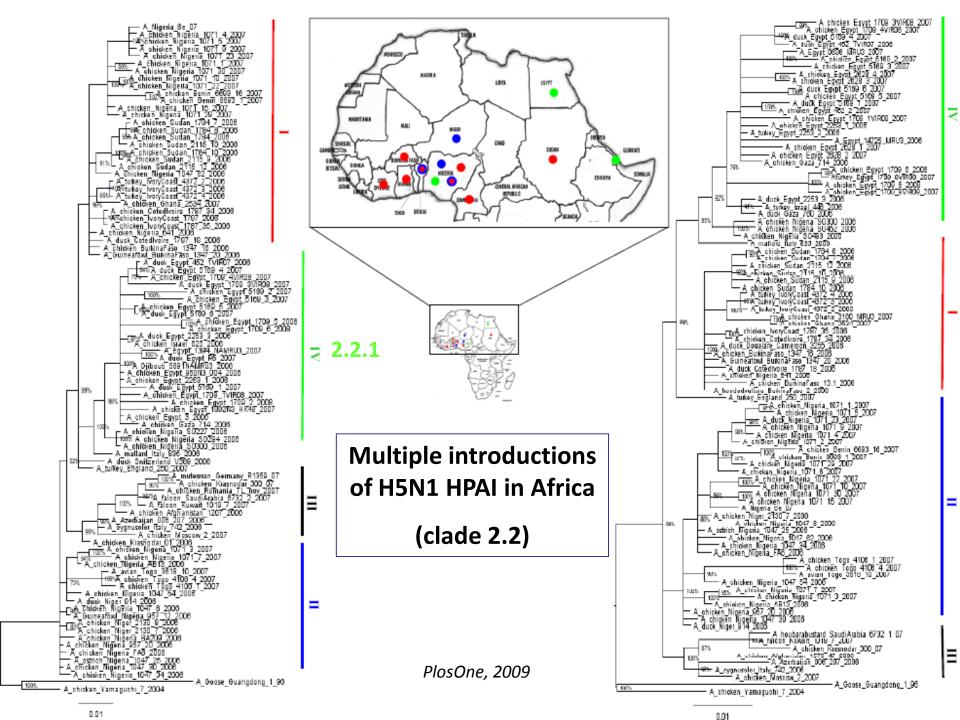
Clade 2.2 in India/Bangladesh,

Clade 2.2.1 in Egypt,

Clades 2.3.2, 2.3.4 and 7 in Asia

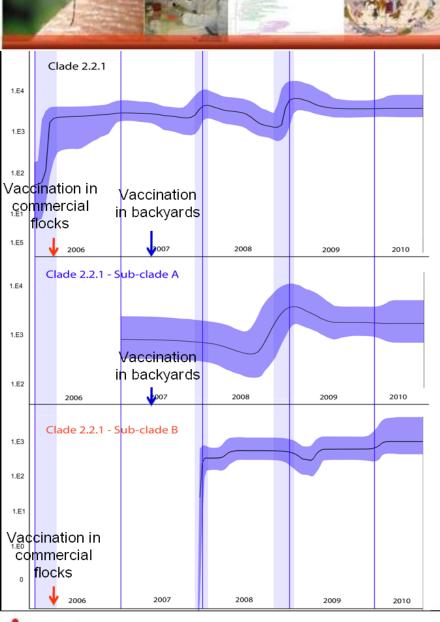
requires assignment of divergent HA genes **to new** second, third, and/or fourth **order clades**.


Clades 0, 3, 4, 5, 6, 8, 9 and


several second and third-order groups from clade 2


have not been detected since 2008 or earlier.

WHO H5N1 Evolution Working Group, 2011



Vaccine, 2011a

Clade 2.2.1 in Egypt

2.2.1 B viruses **drifted away** from the vaccine strain most commonly applied in commercial poultry (Avian Pathol., 2010; Vaccine, 2011; J Virol, 2011)

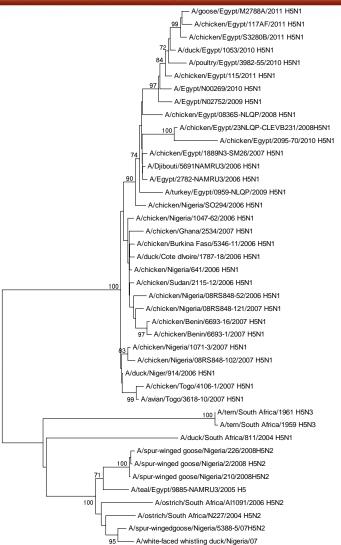
Subclade A

Evolutionary rate: 4.07 x 10⁻³ sub/site/y

Subclade B

Evolutionary rate: 8.87 x 10⁻³ sub/site/y

Vaccine, 2011


Notifiable Avian Influenza in Africa (other than HPAI H5N1)

From Olivier, 2006 - adapted

Year	Pathotype	Species	Country
1961	HPAI H5N3	Wild birds (terns)	South Africa
1991	LPAI H7N1	Ostrich	South Africa
1994	LPAI H5N9	Ostrich	South Africa
1995	LPAI H5N2	Ostrich	Zimbabwe
1996	LPAI H5N2	Ostrich	Zimbabwe
2004	H5N2	Wild birds	South Africa
2004	HPAI H5N2	Ostrich	South Africa
2004	H5N1-H5N3	Wild birds	South Africa
2005	H5N?	Wild birds	Egypt
2005	LPAI H7N7	Wild birds	Egypt
2006	H5N3	Wild birds	Mali
2007	HPAI H5N2	Wild birds	Nigeria
2008	LPAI H5N2	Wild birds	Nigeria
2011	HPAI H5N2	Ostrich	South Africa

H5N1HPAI 2006-2011

H5N2 LPAI & HPAI 2004-2008

Discussions - I

 NDV is present worldwide, with some virus lineages becoming dominant (e.g. 5 in Eurasia)

 In Africa, lineages 5 and 7 are the most common lineages causing the majority of the outbreaks in poultry

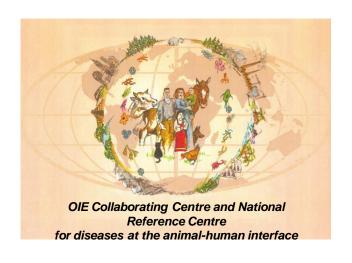
Discussions - II

- HPAI H5N1 is still circulating in several countries and it is endemic in 6 at least, including one African country (Egypt).
- NAI (H5 & H7) are sporadically reported in Africa, with the majority of cases being caused by the H5 subtype
- The idea of an "endemic" African circulation of related LP/HPAI H5N2 viruses in wild birds and poultry deserves further investigation

Discussions - III

- In Africa, monitoring and surveillance should aim to collect more information particularly (but not exclusively) on the epidemiology and ecology of HPAI H5N1 clades 2.2.1 & 2.3.2.1; LP/HPAI H5N2 and LPAI H9N2 as well as on lineages 5 and 7 of NDV.
- Information should be gathered in order to evaluate the efficacy of AI and ND vaccines currently available and applied in this continent and to implement appropriate control measures.

Acknowledgments



Thank you for the attention

Istituto Zooprofilattico Sperimentale delle Venezie

Giovanni Cattoli

Ph.: +39 049 8084384 | gcattoli@izsvenezie.it

www.izsvenezie.it

